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AsS PART OF ITS GOAL TO DE-
VELOP THE BASIS FOR A U.S,
NATIONAL STANDARD FOR -CMS
SOFTWARE PERFORMANCE
EVALUATION, THE NATIONAL
INSTITUTE OF STANDARDS AND
TECHNOLOGY (NIST) 1S IMPLE-
MENTING A SPECIAL TEST
SERVICE TO BE OFFERED
THROUGH THE NIST MEASURE-
MENT SERVICES PROGRAM. THIS
SERVICE IS BASED ON A BLACK~
BOX SOFTWARE MODEL, IN
WHICH THE INTERNAL STRUC~
TURE OF THE SOFTWARE AND
THE CHOICE OF SOLUTION METH-
ODS ARE ASSUMED TO BE UN~-

- KNOWN. THE MODEL IDENTIFIES
A NUMBER OF ERROR SOURCES
FOR DATA ANALYSIS SOFTWARE.
THE AUTHORS ARE DESIGNING
TEST METHODS FOR IDENTIFYING
THE YARIOUS COMPONENTS OF
THE MODEL AND HOW THOSE
COMPONENTS RELATE TO MEA-
SUREMENT UNCERTAINTY IN
INSPECTION APPLICATIONS,

ata analysis software has become increasingly
important in modern dimensional measure-

ment systems. This is particularly true of co-
ordinate measurement systems (CMSs) such as vision
systems, theodolites, photogrammetry, and coordinate
measuring machines (CMMs). Despife the obvious ben-
efits of using such software, computations to convert raw
data to reported results can be a major source of error
in measurement systems. Yet there are no standards or
accepted methods for evaluating the effects of software on
the overall uncertainty of measurements. The term
computational metrology refers to the study of the ef-
fects of data analysis com-
putations on the perfor-
mance Uf measurement
systems. This article iden-
tifies those aspects of com-
putational metrology that
are particular to CMSs. In
particular, we will examine the objective of the compu-
tations, how these functions are carried out in soft-
ware, and how software performance can be tested.
Not everyone shares the view that computational
metrology is a significant area of study. For example,

an ASME standard on measurement uncertainty states:
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Computativns or raw dule are done to produce
output (data) in engineering units. Typical
errors in this process stem from curve fits and
computational resolution. These errors are often
negligible [1]. -

The standard does deal with the propagation of
errors through computations, but the above is the only
mention of computations as a source of errors.

During the last few years, however, much evidence
has been discovered that data analysis can be a signifi-
cant source of errors. In the mid-1980s, Germany began
a-program of testing CMM software, with the express
purpose of improving what was perceived as low quality
of commercial fitting algorithms {2]. In 1938, Walker
issued an advisory in which he reported the results of
experiments with commercial inspection systems:

Certain algorithms . .. are capable of stating

that the measurement is worse than the actual
data gathered up to an error of 37 percent and
thut the meuswrement is better than the actual

data gathered up to an error of 50 percent [3].

And in 1989, Estler analyzed a measurement device for
inspecting the solid rocket booesters casings for the NASA
space shuttle [4]. He reported that the data analysis

software was the single largest source of error in the

entire system.

There is a great deal of ongoing research on CM3
algorithms. (See [5] for a survey.) There is also growing
interest by government standards laboratories in testing
the performance of CMS software, particularly in Great
Britain [6] and Germany {7]. Both countries offer ser-
vices to test CMS software by comparing results for test
data sets to results obtained from reference software. In
the U.8., NIST is developing a similar service [8]..

Of particular interest is the performance of software
for calculating geometry that best fits a set of points mea-
sured on a part surface. Fitting is at the core of most
measurements made by CMSs.! From a metrological
point of view, two factors determine fitting software
performance: 1) the choice of fitting objective and 2) the
quality of the software implementing that objective.

1. Fitting is usually thought to involve optimizing the fit between a
single geometric form—plaxe, cylinder, etc.—to a data set. How-
ever, so-called soft functional gaging can also be thought of as
fitting a solid model of a functional gage 1o the data.
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Fitting software

tig. 1. Ideal model of fitting.

To date, testing methods have focused on the quality
of software implementation [9]. These methods have
been designed on the premise that the internal structure
of the software is a “black box.” Testing is based on evalu-
ating the fitting resuls for specially designed data sets.

Published testing methods have been uniformly
based on what might be called an external view of the
behavior of the software: Is the software computing
whalt it is advertised to compute? This view has two
weaknesses. First, it provides few guidelines for design-
ing a suite of data sets or for interpreting the results.
Second, it provides no guidelines for evaluating the wtil-
ity of different fitting objectives for an application. In
this article we outline the elements of a software testing
theory that is based on an operational model of error

sources in fitting software. We believe that an opera-

tional model will provide a basis for designing test meth-
ods that are based on sound metrological principles.

The next section of this article discusses the rela-
tionship between fitting objectives, measurement error,
and tolerance theory. The following section examines
implementation issues: the interaction of optimizatien
methods and computing environment, handling of ex-
treme cases, and code correctness. The last:section dis-
cusses the testing methods under development at NIST,
We conclude with a summary of issues that need further
attention.

FITTING OBJECTIVES

Fitting can be viewed as an optimization problem:
We must find the parameters of substitute geometry that
optimize a particular fitting objective for a set of points.
The fitting process is illustrated in Fig. 1. As mentioned
above, the choice of fitting objective is-an important
determinant of CMS performance. Part tolerances are
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Fig. 2. Quartile plots comparing 100 least squares and minimum circumscribed fits for each value of 6.

generally interpreted in terms of exiremal fits. That is,
the fitting objective is to find the geometry that fits the
extremes of the data: the largest inscribed, smallest cir-
‘cumscribed, or minimum separation geometry. Also,
simulation of functional gages (sometimes called soft
functional gaging) can be interpreted as finding the
‘'maximum clearance (or minimum interference) solid
‘model fit to the data. On the other hand, measurement

practice most-commonly involves averaging fits, typically

least-squares (orthogonal distance regression) but also
objectives such as least median of squares [10, 11] and
other robust techniques for outlier detection.

In general, averaging fits commonly used in me-
trology are biased with respect to the extremal fit objec-
tives suggested by tolerancing theory. That is, in the
limit as the point density goes to infinity and the mea-
surement error for each point goes to zero, averaging fits
will be different from extremal fits.2 On the other hand,
it would seem that averaging fits are less sensitive to
‘measurement errors than are extremal fits [12].

To study these effects for least-squares and mini-
mum circumscribed fitting objectives we used a-circle-
fitting problem. We generated 20 evenly spaced points
around a unit circle and then perturbed the points by
moving each in a random direction by a random distance.

2. Depending on one’s viewpoint, bias mightbe considered to be an
error in the model. We reserve the term model error, however, to
indicate the error resulting from picking a particular geometric
form to fit to the data.

The directions were uniformly distributed over the unit
circle and the distances were uniformly distributed be-
tween zero and an error scale factor 8. Perturbations
were uncorrelated between points. We varied 6 from
0.005 to 0.05 and generated 100 data sets for each
value of d. For each data set, we computed both the
least-squares and minimum circumscribed fit.

Figure 2 shows the results of these experiments.
Figure 2a shows the distance betwéen centers and Fig.
2b shows the difference in radii for the two objectives.
The median distance between centers for the two fit objec-
tives varies approximately linearly with the perturbation
scale d, with a slope of about 0.5. Similarly, the differ-
ence in radii between the two objectives varies linearly
with a slepe of about one. If the perturbations are
viewed as form errors in the feature, these results sug-
gest that the bias of least-squares fitting is about half of
the form error. The perturbations can also be viewed as
errors in measuring individual points; a similar analysis,
comparing the fits to the unperturbed circle, then shows
that minimum circumscribed fitting is about twice as
sensitive to measurement error as least-squares fitting.
More generally, extremal fits will propagate more of the
point measurement error than least-squares fittng.

Many fitting criteria can be expressed as special
cases of a general criterion ealled L -norm estimation.
This is a mathematically convenient formulation for
which there are many results {13]. The L -norm estima-
tion problem is to find the fit parameters that minimize
the L, norm:
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where r, is the i* residual and the sum is over n data
points. Least-squares fitting corresponds to the case

p = 2. The limit of I, as p goes to infinity is the largest
magnitude residual, so that the L problem is minimiz-
ing the maximum magnitude residual—that is, finding
the minimum zone fit. Generally, the bias and sensitivity
errors of the fit will vary with p. This relationship is
shown in Fig. 3. As p increases, the sensitivity of the fit
‘o point measurement error increases, but the bias with
respect to the fit preseribed by tolerance theory de-
creases. The precise shape of the curves depends on the
distribution of residuals, the geometry of the particular
fitting problem, the configuration of measured points,
and the measurement uncertainty of the points.

We see, therefore, that it is very difficult to de-
velop general guidelines for the proper choice of fitting
objective for a practical CMS. Least-squares fitting is
widely used and debated, with many claiming that
extremal fitting is better because it conforms to tolerance
theory. In fact, the best choice of fitting objective is that
which produces the smallest combined uncertainty in the
result, How to make the best choice is not at all clear.

We can modify the ideal model of fitting shown in
Fig. 1 to include the effects identified in this section of
the article. The new model, drawn in Fig. 4, shows that

Fitting

Software
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Fig. 3. L, norm uncertainties.

the observable values—the data points being fitted and
the reported fit—are combinations of inherently unob-
servable quantities. The observed datapoints always

include some element of measurement error. The re-

ported fit is a combination of the “true fit” (the fit to
the surface points) and two additional errors: 1) the
bias introduced by the.choice of fitting objective .and
2) the sensitivity of the fit to the measurement error.

The sensitivity and bias results reported here are
highly specific. We need to develop more general results
on these aspects of commonly used fitting objectives.

Fig. 4. Model of
fitting software
with bias and

sensitivity errors.
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The general results can then form the basis for practical
riteria for selecting the best objective function for a
sarticular application. Such criteria would be of great
benefit in inspection planning.
Work is also needed to develop objectives with
smaller combined uncertainty. For example, non-ideal
‘geometry models should be used to reduce the. model
error of fitting perfect circles to features that are not
circular, Going further, we would like to draw on pat-
tern recognition techniques to develop methods for rec-
ognizing and classifying part form deviations. Finally,
fitting objectives could make use of production precess
models. It is common knowledge in practice that infor-
mation on how a part was manufactured will help an
experienced inspeetor to do a better job. The inspector
can draw on internal models of the form deviations ex-
pected from the manufacturing process to develop better
inspection plans and data analysis strategies. Bayesian
methods might be the basis for developing inspection
systems with similar capabilities.

IMPLEMENTATION ISSUES

The second aspect of data analysis software perfor-
mance discussed above is the implementation of the
fitting objective in software. Four factors determine the
quality of the implementation: 1) the optimization
method chosen to compute the fit; 2) the computing
environment (word length, rounding method, dynamie
range, ete.); 3) handling of extreme cases; and 4) code
correctness. Factors one and two, optimization methods
and computing environment, are discussed in this section.
Handling of extreme cases and code correctness are
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Fig. 5. The
Jorward error

analysis model,

- Truefit
Rounding ' "\

Other errors

discussed in the following section on testing issues.

The choice of optimization method greatly affects
how the computing environment impacts measurement
uncertainty. In particular, the effects of rounding due to
machine precision can be much greater for some optimi-
zation methods than for others, even for the same objec-
tive function. Analyses of rounding errors are often done
in terms of a quantity called the unit roundoff error,
denoted here by u. The u is the largest number that, when
added to one in floating point arithmetic, produces an
answer of one. (Typically, uis about 10~ for single
precision and about 10-"° for double precision.) Sorme
iterative algorithms rely on convergence tests to end.
The effects of the convergence tests can someties be
modeled as an increased value of u for the computing
environment,

The study of how optimization methods and
rounding errors interact can draw on results in linear
algebra perturbation theory. Although fitting problems
are often nonlinear in nature, most optimization algo-
rithms work by repeatedly solving a linear approxima-
tion to the fitting objective. So the results of linear alge-
bra can potentially be applied to a much broader class
of optimization methods than might be apparent. (All
results in this section are based en linear algebra found
in [14].)

" One example of how the choice of optimization
method can dramatically affect the impact of rounding
errors is simple linear regression. Suppose we wish to
compute a regression line, represented by a vector » of
slope and intercept, to the three points (~100, -100), (0,
0), and (100, 100). Clearly, the regression line has a
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slope of one and a y-intercept of zero. Generally, the
computed value of » (by any method) will be different
from the exact solutien v, The fitting objective is to
find the » that minimizes the sum of the squares of re-
siduals. This can be modeled .as solving for v in the ma-
trix equation Av ~ y, where

[-100 1
0 1
| 100 1

and y ={~100, 0, 100)7. The most common solution
method is the use of the normal equations for the model,
obtained by multiplying the original matrix equation on
the left by A” and solving for v using matrix inversion.
The resultis v = (ATA)'A"y. If v is computed with

_roundoff error u using the Choleski decomposition of
A"A, then the error of the solution is || o — vy4 || ~ 6,700u.
(The coefficient 6700 rises from the condition number
of the matrix A7A. The condition number roughly char-
acterizes how hard the problem is. It is a measure of
how close the matrix is to a singular matrix, which can-
not be solved.)

The same objective can be evaluated using the
singular value decomposition. A can be decomposed into
the product UTE ¥, where U and ¥ are orthogonal ma-
trices and X is a diagonal matrix. Let Z* be the diagonal
matrix obtained from ¥ by setting each element of Z* to
zero if the corresponding element of 2 is zero, or else to
the inverse of the corresponding element of 2. Then » =
VE*UT is the least-squares solution. If » is obtained by
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Fig. 6. The inverse
error analysis

model.

True fit

Bias

evaluating the singular value decomposition with roundoff
error u, then the error of the solution is || v — v, || ~ 82u.
Thus, for this very simple problem, the effects of round-
ing can be changed by nearly two orders of magnitude
by the-choice of optimization method. (In this case, the
measure of difficulty is the condition number of 4, a
much smaller number.)

The above is an example of forward error analysis.
It states that the computed fit is the exact fit plus some
error. This is illustrated graphically in Fig. 5. General
results for forward error analysis can be obtained for some
algorithms. For instance,.orthogonal distance regression
of a plane to a set of points can be solved using the sin-
gular value decomposition of the data matrix D. This
algorithm has a relative error of about ul| D || /(A ),
where || D || , is the largest variance of the data in any
direction, A is the smallest variance of the data in the
plane of the fit and p is the variance of the residuals.
Forward error analysis has the shortcoming that the
relative error can only be characterized in terms of the
same quantities (A and p) that are used to compute the
fit. Thus, it is very difficult to write software for esti-
mating the fit uncertainty that will work reliably in the
same computing environment that is being used to cal-
culate the fit.

A different approach, called inverse error analysis,
views the computed solution as the exact solution to a
nearby problem as illustrated in Fig. 6. Consider again
orthogonal distance regression computed by the singular
-value decomposition of the data matrix D. The com-
puted fit is the exact fit to some other data set, D + A.
Here, now, it is easy to characterize the effects of round-
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ing; we have || A]|~cu{| D | ,, for some constant, c, near
one. The effects of rounding are modeled as adding
more noise to the data before the fit is computed. The
computation, however, is then considered to be done in
.exact arithmetic. The effects of the inverse error on the
‘Teported fit are determined by-the sensitivity of the ob-
‘jective function.

Two methods, forward and inverse error analysis,
can be used to study 1) the effects of the optimization
method and 2) rounding on the uncertainty of reported
fits. Ouly inverse srror analysis results arc known for
imany linear algebra procedures. This is because many of
the factors that affect sensitivity also affect the forward
errar analysis, hut need not he considered for inverse
error analysis.

In principle, error analyses can readily be done for
linear Jeast-squares and total-least-squares problerns
solved by commmon methods. However, much more work
needs to be done. Error analysis results need to be devel-
oped for all commonly used algorithms, and the analysis
methods need to be extended to nonlinear problems.
(These are often solved using linear approximations, so the
extensions should be relatively direct). Harder, but equally
important, is extending the methods to nondifferentiable
objectives (such as extremal fits). Often, combinatorial
methods are used for these objectives instead of iterative
linear approximations. The ultimate objective for this
work is the development of practical algorithms for
estimating the uncertainty of a reported fit.

TESTING ISSUES

The purpose of testing is to assess the perfermance
parameters of data analysis software in relationship to
the theory of computational metrology, outlined in the
previous two sections. Performanice parameters include
the error models identified above, the handling of ex-
treme cases, .and errors in coding. The results discussed

in this section are being used to develop a software test- -

ing service to be offered by NIST.

Relatively little work is being done in software
testing, As wentivned iu the introduction, Germany and
Great Britain offer a test service for least-squares fitting
routines. A joint British/German project intends to ex-
tend these services to other fitting objectives. In the U.S,,
ASME Working Group B89.4.10 on CMS Software Per-
formance is developing a standard for characterizing
and testing the performance of data analysis software.

The test service to be offered by NIST will directly sup-
port this emerging standard. We do not mean to suggest
that this is the only work on inspection algorithms. Most
‘work, however, is in developing new kinds of software
or usage guidelines.

Our work on software testing is based on three
assumptions. The first is that tests should be designed
and interpreted according to a well-defined error model.
The models presented above identify four error sources:
bias, sensitivity, rounding error in the fit, and induced

- crror in the data from rounding. The two other sources

of error, handling of extreme cases and code correctness,
will be discussed below.

The second assumption holds that test results must
be interpreted and reported in terms directly related to
inspection tasks. Part tolerances generally require con-
formance of the part to tolerance zones. These zones are
volumes or areas for which the part features or substi-
tute geometry elements must observe certain constraints.
This means that test resulis should quantify the uncer-
tainties of geometric relationships computed by the
software. Representation-specific results (e.g., param-
eter values) should be avoided.

The third assumption is that the software to be
tested is a “black box.” In other words, the internal
stucture of the software—the optimization method, code
structure, computing environment, and so on-—is unob-
servable. Thus, the testing method is limited to supply-
ing the software with fitting problems and analyzing the
fit results. The problem set and the analysis are designed
to identify the elements of the error models.

Assuming black-box testing leads to the now-
common architecture of the testing system shown in
Fig. 7. The system consists of three components: a data
generator, a set of reference algorithms, and the fit
analysis. The data generator is driven by a test deserip-
tion, a high-level specification of the collection of data
sets to be generated. The data sets are processed by the
software under test to generate test fits. At the same time,
the data sets may be processed by fitting software sup-
plied-with the testing system. The data sets, tost fits, and
reference fits are used to assess performance measures
for the software under test. In the remainder of this
section, we will discuss the contents of a test description
and how fit results are analyzed in the NIST system.

A data set is generated from four classes of
information:

HOPP » COMPUTATIONAL METROLOGY
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» the nominal (ideal) geometry of the feature;
s the form error(s) of the feature being simulated;

e the sampling plan (distribution of points on the
feature) for the 'data set; and

s the (random) measurement error distribution
for the points.

A test description consists of ranges of instance
values for each of these information classes. This pro-
vides the flexibility to study the behavior of the software
in a controlled manner. For instance, a test description
that varies the simulated measurement error alone can
be used to assess the sensitivity errors of the software for
the particular combination of other factors. Similarly,
wvatiation of other factors can be used to study other
aspects of the error model.

A comprehensive test will check the behavior of the
software for extreme cases, which fall into three categories:
pathologies, degeneracies, and extreme values. Patholo-

gies are data sets for which no solution is possible. These

include data sets with too few points and problems with
unbounded solutions (such as fitting a circle to collinear
points). Degeneracies are configurations that should
pose no problem but often do. These include data sets
with zero residuals (perfect geometry), “vertical” slopes,
and similar configurations. Extreme values include
number of points (minimum required; maximum of the
implementation), distance from the origin, narrow ge-
ometry bounds (small arcs, etc.), and large residuals.
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Fig. 7. Architecture
of the NIST
software testing
system.

Analysis
of fits

Code errors are difficult to detect. They can only
be found if a test case exercises the relevant code. Code
errors are detected in the analysis by comparing test fits
to corresponding reference fits. This is, in fact, a pri-
mary purpose of computing reference fits. However, it is
essentially impossible to design tests that will find all
code errors in a black box. The best one can do is to
generate data that are representative of the intended
application.

As mentioned ahave, fits aré analyzed in terms of
geometric differences among fits, not parameter values.
In the NIST system, all fit geometries are trimmed by
the projection of the data onto the fit geometry. Com-
parison of test fits to reference fits is used to detect code
errors and to identify systematic bias. Bias can arise
when an implementation optimizes an approximation to
the stated fitting objective. (Commercial software some-
times uses linear approximations in place of nonlinear
objectives to gain a speed advantage.)

The main tool for evaluating software is measures
of variation in fit geometry in response to varying test
conditions. These measures are independent of reference
fits. A different analysis is used for each type of geom-
etry. For instance, cylinder fits are analyzed as follows.

The axis of each cylinder is trimmed by the orthogo-
nal projection of its corresponding data set onto the
axis.? The smallest cylinder that encloges the axis
segments is then computed. The diameter of this

3, Fits from more than one data set may be analyzed together.
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losing cylinder is a measure of dispersion for toler-
&3 such as position, orientation, and parallelism.
epending on which parameters of the test description
involved, this dispersion ie an estimate of sensitivity,
jas, or effects of rounding errors. Similarly, the spread
radii of the cylinder fits measures dispersion for size.
e spread of angles between the axes is measured as
e angle of the narrowest cone that encloses all the
ction vectors of the axes. This measure does not
te directly to common tolerance applications, but
be used for diagnostic purposes.

~ Comparison of fits to a reference is done on a
data set-by-data set basis. {That is, a different reference
5 used for each data set.) Differences between test fits
d the reference for each data set are computed in a
pianner similar to that described above. Thus, for in-
ance, the maximum deviation of axis segments from
ie reference axis measures axis location differences.
ifference measures can be accumulated across data sets
study the sensitivity of the differences to test param-
ters. A detailed description of analysis methods used at
NIST will be reported elsewhere [15].

The theory of testing data analysis software is not
well developed. The approach presented in this article
1s a start, but several research issues still need to be
addressed. Software performance is affected by many
factors, and itis a dauntmg task to define tests that
represent all possible variations of these factors. Also,

ests should be representative of the applications for which
the software is to be used. Statistical design of experi-
ments can be used to greatly reduce the number of tests,
but appropriate models of the factors and their interac-
tions need to be developed. Even a tighily designed test
suite is likely to have too many cases to examine indi-
-‘ﬂdually A significant research challenge is the develop-

esults in ways that relate to the application and do not
__}_,"de important information. The measures discussed
ébove for dispersion and difference from reference fits
are one form of summarization. They are useful for de-
veloping general conclusions, but there is no assurance
that all important aspects of performance will be repre-
sented in the summary results. More work is needed in
“this area as well. Finally, the relationship of testing to the
error models has only been developed in outline. Much
work remains in understanding how to design and
interpret tests that provide an accurate picture of soft-
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ware performance.

SUMMARY AND DISCUSSION
This article has disenssed three aspects of campu-
tational metrology:

* fitting objectives;
¢ implementation issues; and
* testing issues.

In regard to fitting objectives, clearly, different
measurement applications can differ on measurement
goals. For instance, part inspection for tolerance con-
formance should be based on geometric tolerancing
semantics [16]. Part measurement for process control,
however, might better be based on vectorial tolerancing
semantics [17). We described a number of research
issues regarding fitting objectives.

Any assessment of measurement uncertainty must
be based, foremost, on a definition of the measurand.
Only then can the bias of the fitting objective be assessed.
The ASME Working Group Y14.5.1 on Mathematical
Principles of Dimensioning and Tolerancing is develop-
ing scmantics of design tolerances. This standard, ex-
pected now to be published in late 1994, will define the
measarand for inspection applications,

A second aspect of computational metrology is the
classification and study of implementation issues. The
challenge is to develop effective operational models of
software that support practical test methods. This paper
has presented a model that appears to be effective for
certain kinds of fitting. More work needs to be done in
developing models for other fitting criteria. Accepted
practice is that a measurement is incomplete without a
statement of measurement uncertainty. Much remains to
be done in developing tools for assessing measurement
uncertainty in practical applications.

Data anailys‘is software, like any tool, can be mis-
used. Guidelines for proper use of such software are as
important as models-of software performance. A discus-
sion of usage has been beyond the scope of this paper.
However, the ASME Working Group B89.3.2 on Dimen-
sional Measurement Methods is developing a standard

that addresses this issue.

The third aspect of computational metrology is
testing methods. We have deseribed activity at NIST
and elsewhere in software testing. The ASME B89.4.10
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Working Group on CMS Software Performance is devel-
oping a standard for software testing. The planned NIST
testing service will be based on, and will support, this

standard. Today, there are no mechanisms to validate

the results of data analysis with respect to.international
standards of length. As research issues are addressed
aud testing technology matures, ‘we belicve that concepis

of traceability of software results will finally become

possible.

Inspection software performance has become an
important issue in the last few years and software prob-
lems, or their avoidance, have become a significant ex-
pense for many companies. Theories, tools, and stan-
dards in-computational metrology are now beginning to
emerge. It is our hope that with these advances, the
utility of CMS software will greatly improve.
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